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Introduction Study of the decay rate Conclusion and a take-home question

The equation

We study the fourth-order evolution equation:

∂ttu(x , t) + a∂xxxxu(x , t) + b∂tu(x , t) + α∂tu(ξ, t)δξ = 0,

where (x , t) ∈ (0, 1) × (0, +∞).

Here,

This problem is motivated by the study of vibration in bridges. Then:

u: transverse displacement of the bridge deck (identified with [0, 1]);
δξ: presence of a shape memory alloy cable at x = ξ.
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Boundary and initial conditions

We couple the equations with boundary conditions

u(0, t) = u(1, t) = ∂2
x u(0, t) = ∂2

x u(1, t) = 0, t ∈ (0, +∞),

and initial conditions

u(x , 0) = u0(x), ∂tu(x , 0) = u1(x), x ∈ (0, 1).
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Energy and dissipation

We define the energy of a solution u(x , t) by

E (t) := 1
2

∫ 1

0

(
|∂tu|2 + a|∂xxu|2

)
dx .

Differentiating (formally) and integrating by parts, we obtain

∂tE (t) = −b
(∫ 1

0
|∂tu|2 dx

)
− α|∂tu(ξ, t)|2

≤ 0.

Hence, the system is dissipative, in the sense that the energy decreases.
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Functional setting
To use the semigroup theory, we want to rewrite the problem as{

∂tU = AαU,

U(0) = U0,

where U = (u, ∂tu) and U0 = (u0, u1).

This is possible with

Aα(U) :=
(
v , −a∂xxxxu1 − bv − αv(ξ)δξ

)
, for U = (u, v)

and

Dom Aα :=
{

U = (u, v) | u ∈ H4(0, ξ) ∩ H4(ξ, 1), v ∈ H2(0, 1),

u(0) = v(0) = u(1) = v(1) = ∂xxu(0) = ∂xxu(1) = 0,

∂xxu(ξ−) = ∂xxu(ξ+), ∂xxxu(ξ+) − ∂xxxu(ξ−) = −α

a v(ξ)
}

.
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Functional setting

The energy space H is given by

H :=
(
H2(0, 1) ∩ H1

0 (0, 1)
)

× L2(0, 1)

with the inner product defined by

(U1, U2)H :=
∫ 1

0
a ∂xxu1 ∂xxu2 + v1 v2 dx

for all U1 = (u1, v1) ∈ H and U2 = (u2, v2) ∈ H.

Remark
The norm U 7→ (U, U)1/2

H is equivalent to the usual norm of H.
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Well-posedness of the Cauchy problem

Using the Lumer-Phillips Theorem, we can show the following

Theorem (Existence and uniqueness)

(1) If U0 ∈ Dom Aα, then the Cauchy problem has a unique strong
solution

U ∈ C0([0, +∞[, Dom Aα) ∩ C1([0, +∞[, H).

(2) If U0 ∈ H, then the Cauchy problem has a unique weak solution

U ∈ C0([0, +∞[, H).
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The damping rate

Theorem (Régnier (2022))
The system of eigenvectors of Aα constitutes a Riesz basis in H.

Corollary (Régnier (2022))
The optimal energy decay rate of the equation, i.e. the smallest ω(α) < 0
such that there exists C > 0 with

E (t) ≤ Ce2ω(α)t∥U0∥2
Dom Aα

for all t ≥ 0 is given by

ω(α) := sup
{

ℜ(µ) | µ is an eigenvalue of Aα

}
.
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The role of the parameter α

A natural question
How does the decay rate ω(α) depend on α?

An important assumption
To avoid any “resonance phenomena”, we will assume that ξ /∈ Q.
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The characteristic equation

Proposition
A complex number µ ∈ C \ {−b, 0} is an eigenvalue of Aα if and only if it
satisfies the characteristic equation

(µ + b) sinh(λ) sin(λ)

+ αλ
[
sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ))

]
= 0,

where

λ(µ) := 4

√
−bµ + µ2

a .

Remark
Replacing λ by iλ, −λ or −iλ leads to an equivalent equation.
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The characteristic equation
Finding the eigenvalues of Aα amounts to find roots of the function

F (µ; α) := 2µ(µ + b)F0(λ) + αµλF1(λ),

where

λ(µ) := 4

√
−bµ + µ2

a ,

F0(λ) := sinh(λ) sin(λ),
F1(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Remark
α = 0 ⇝ roots of F0;

α → +∞ ⇝ roots of F1.

Damien Galant Study of the decay rate of a fourth order problem 11



Introduction Study of the decay rate Conclusion and a take-home question

The characteristic equation
Finding the eigenvalues of Aα amounts to find roots of the function

F (µ; α) := 2µ(µ + b)F0(λ) + αµλF1(λ),

where

λ(µ) := 4

√
−bµ + µ2

a ,

F0(λ) := sinh(λ) sin(λ),
F1(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Remark
α = 0 ⇝ roots of F0;

α → +∞ ⇝ roots of F1.

Damien Galant Study of the decay rate of a fourth order problem 11



Introduction Study of the decay rate Conclusion and a take-home question

The characteristic equation
Finding the eigenvalues of Aα amounts to find roots of the function

F (µ; α) := 2µ(µ + b)F0(λ) + αµλF1(λ),

where

λ(µ) := 4

√
−bµ + µ2

a ,

F0(λ) := sinh(λ) sin(λ),

F1(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Remark
α = 0 ⇝ roots of F0;

α → +∞ ⇝ roots of F1.

Damien Galant Study of the decay rate of a fourth order problem 11



Introduction Study of the decay rate Conclusion and a take-home question

The characteristic equation
Finding the eigenvalues of Aα amounts to find roots of the function

F (µ; α) := 2µ(µ + b)F0(λ) + αµλF1(λ),

where

λ(µ) := 4

√
−bµ + µ2

a ,

F0(λ) := sinh(λ) sin(λ),
F1(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Remark
α = 0 ⇝ roots of F0;

α → +∞ ⇝ roots of F1.

Damien Galant Study of the decay rate of a fourth order problem 11



Introduction Study of the decay rate Conclusion and a take-home question

The characteristic equation
Finding the eigenvalues of Aα amounts to find roots of the function

F (µ; α) := 2µ(µ + b)F0(λ) + αµλF1(λ),

where

λ(µ) := 4

√
−bµ + µ2

a ,

F0(λ) := sinh(λ) sin(λ),
F1(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Remark
α = 0 ⇝ roots of F0;

α → +∞ ⇝ roots of F1.

Damien Galant Study of the decay rate of a fourth order problem 11



Introduction Study of the decay rate Conclusion and a take-home question

The characteristic equation
Finding the eigenvalues of Aα amounts to find roots of the function

F (µ; α) := 2µ(µ + b)F0(λ) + αµλF1(λ),

where

λ(µ) := 4

√
−bµ + µ2

a ,

F0(λ) := sinh(λ) sin(λ),
F1(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ)) − sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Remark
α = 0 ⇝ roots of F0;
α → +∞ ⇝ roots of F1.

Damien Galant Study of the decay rate of a fourth order problem 11



Introduction Study of the decay rate Conclusion and a take-home question

Dependence of the roots on parameters
A general fact from complex analysis

Theorem (“Holomorphic implicit function Theorem”, very roughly
stated)
Roots of holomorphic functions depend continuously, including
multiplicities, on the parameters, and the branches of roots are
holomorphic.
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Dependence of the roots on parameters
A simple example: roots of z 7→ z2 + c

z 7→ z2 − 4

1
−2

1
2

Blue: values. Red: multiplicities.
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Dependence of the roots on parameters
A simple example: roots of z 7→ z2 + c

z 7→ z2 + 4

12i

1−2i

Blue: values. Red: multiplicities.
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The case α = 0: roots of λ 7→ F0(λ)
A computation

We recall that
F0(λ) := sinh(λ) sin(λ).

Therefore, the set of roots of F0 is{
kπ, ikπ | k ∈ Z

}
,

and all have multiplicity one, except zero which has multiplicity two.
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The case α = 0: roots of λ 7→ F0(λ)
Graphical representation in the λ plane

1

1

1

1

1

1

1
1

1

1

1

1

2
−3π −2π −π 3π2ππ

−3πi

−2πi

−πi

3πi

2πi

πi

0
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Introduction Study of the decay rate Conclusion and a take-home question

The case α = 0: roots of µ 7→ F0(λ(µ))
Graphical representation in the µ plane (a = 0.05, b = 3)

ℜ(z) = −b
2

λ(µ) = 4

√
−bµ + µ2

a

i.e.

µ2 + bµ + aλ4 = 0

so that

µ(λ) = −b ±
√

b2 − 4aλ4

2

Note: 0 is a root, but is not an eigenvalue!
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The strategy: a continuation argument

We write
F1(λ) = s(λ) − t(λ)

where

s(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ))
t(λ) := sinh(λ) sin(λξ) sin(λ(1 − ξ)).

Strategy: study roots of

F̃γ(λ) := s(λ) − γt(λ).

as γ varies from 0 to 1.
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
Roots of s and t: a computation

We have

s(λ) := sin(λ) sinh(λξ) sinh(λ(1 − ξ))
t(λ) := sinh(λ) sin(λξ) sin(λ(1 − ξ)),

so that {
λ ∈ C

∣∣∣ s(λ) = 0
}

=
{

kπ, i kπ

ξ
, i kπ

1 − ξ

∣∣∣ k ∈ Z

}
and {

λ ∈ C
∣∣∣ t(λ) = 0

}
=

{
ikπ,

kπ

ξ
,

kπ

1 − ξ

∣∣∣ k ∈ Z

}
.

All those roots have multiplicity one, except 0.
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
Roots of s and t: graphical representation in the λ plane

Green: roots of s

Orange: roots of t

Can you see something?
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
A detour through number theory: Beatty’s Theorem

Theorem (Rayleigh (1894) - Beatty (1927))
Let 0 < r < 1 be irrational. Define the sets

A :=
{⌊n

r

⌋ ∣∣∣ n ∈ Z>0
}

, B :=
{⌊ n

1 − r

⌋ ∣∣∣ n ∈ Z>0
}

.

Then,
A ∩ B = ∅, A ∪ B = Z>0.

J. W. Strutt, 3rd Baron Rayleigh. The Theory of Sound. Vol. 1
(Second ed.). Macmillan (1894). p. 123.

S. Beatty “Problem 3173”. American Mathematical Monthly. 33 (3):
p. 159 (1926).
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
Beatty’s Theorem: a numerical example

Let us take r =
√

2 − 1. Then (using a little script),

A =
{⌊n

r

⌋ ∣∣∣ n ∈ Z>0
}

=
{

2, 4, 7, 9, 12, 14, 16, 19, . . .

}
and

B =
{⌊ n

1 − r

⌋ ∣∣∣ n ∈ Z>0
}

=
{

1, 3, 5, 6, 8, 10, 11, 13, 15, 17, 18, 20, . . .

}
.
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ : main ideas

Main ideas:

Using Beatty’s Theorem, we can prove that the roots of s and t are
intertwined as we saw. This means that we know which sign s has at
the roots of t, and conversely;
We can use the intermediate value theorem on many intervals of the
real and imaginary axes;
We use the holomorphic implicit function Theorem;
Since roots have multiplicity one, the symmetries of the problem
imply that they stay on the axes!
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ : main ideas

Main ideas:
Using Beatty’s Theorem, we can prove that the roots of s and t are
intertwined as we saw. This means that we know which sign s has at
the roots of t, and conversely;
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We use the holomorphic implicit function Theorem;
Since roots have multiplicity one, the symmetries of the problem
imply that they stay on the axes!
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ : main ideas

Main ideas:
Using Beatty’s Theorem, we can prove that the roots of s and t are
intertwined as we saw. This means that we know which sign s has at
the roots of t, and conversely;
We can use the intermediate value theorem on many intervals of the
real and imaginary axes;
We use the holomorphic implicit function Theorem;

Since roots have multiplicity one, the symmetries of the problem
imply that they stay on the axes!
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Roots of λ 7→ F1(λ)
The continuation argument for F̃γ : main ideas

Main ideas:
Using Beatty’s Theorem, we can prove that the roots of s and t are
intertwined as we saw. This means that we know which sign s has at
the roots of t, and conversely;
We can use the intermediate value theorem on many intervals of the
real and imaginary axes;
We use the holomorphic implicit function Theorem;
Since roots have multiplicity one, the symmetries of the problem
imply that they stay on the axes!
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0

Damien Galant Study of the decay rate of a fourth order problem 23



Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.1
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.2
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.3
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.4
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.5
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.6
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.7
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.8
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 0.9
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of λ 7→ F1(λ)
The continuation argument for F̃γ in the λ plane

Green: roots of s
Orange: roots of t
γ = 1 ⇝ roots of F1
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of µ 7→ F1(λ(µ))
Graphical representation in the µ plane

ℜ(z) = −b
2

λ(µ) = 4

√
−bµ + µ2

a

i.e.

µ2 + bµ + aλ4 = 0
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Introduction Study of the decay rate Conclusion and a take-home question

Roots of µ 7→ F1(λ(µ))
Graphical representation in the µ plane

ℜ(z) = −b
2

λ(µ) = 4

√
−bµ + µ2

a

i.e.

µ2 + bµ + aλ4 = 0
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Introduction Study of the decay rate Conclusion and a take-home question

The axis ℜ(z) = −b
2

Lemma
If α > 0, then, the only possible eigenvalue on the axis ℜ(z) = −b

2 is
µ = −b

2 .

Lemma (Roughly stated)
When α > 0 is small, “all eigenvalues µ starting on the axis ℜ(z) = −b

2
move to the left”.
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Introduction Study of the decay rate Conclusion and a take-home question

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.1)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.2)
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Introduction Study of the decay rate Conclusion and a take-home question

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.3)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.4)
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Introduction Study of the decay rate Conclusion and a take-home question

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.5)
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Introduction Study of the decay rate Conclusion and a take-home question

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.6)
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Introduction Study of the decay rate Conclusion and a take-home question

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.7)
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Introduction Study of the decay rate Conclusion and a take-home question

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.75)
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Introduction Study of the decay rate Conclusion and a take-home question

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.8)
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Introduction Study of the decay rate Conclusion and a take-home question

Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.85)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 0.9)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 1)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 2)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 3)
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2 − 1
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Pink: roots of F0 (α = 0)
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√
2 − 1

ℜ(z) = −b
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Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 10)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 20)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 100)
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Moving α from 0 to +∞
Graphical representation in the µ plane: a = 0.05, b = 3, ξ =

√
2 − 1

ℜ(z) = −b
2

Pink: roots of F0 (α = 0)

Violet: roots of F1 (α → +∞)

Orange: eigenvalues (α = 1000)
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Moving α from 0 to +∞
Main ingredients of the proofs

Once again, our main tools are:

The full knowledge of roots and multiplicities when α = 0;
The holomorphic implicit function Theorem;
A complete understanding of the roots of F0 and F1 on R;
Applying the intermediate value Theorem many times between
consecutive roots of F0 and F1.

A remarkable fact
Our methods will imply that the roots (other then a few known
exceptions) have multiplicity one. When we know they are real, this
implies that their derivative with respect to α has a sign, so that we
obtain monotonicity of real eigenvalues with respect to α!
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Main results

Theorem (G., Régnier, Troestler (2023))
Recall that the optimal decay rate ω(α) is given by

ω(α) = sup
{

ℜ(µ) | µ is an eigenvalue of Aα

}
.

Then,
1 ω is continuous in α.

2 ω is nondecreasing;
3 one has

lim
α→+∞

ω(α) = 0. (!)
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A physical conclusion

The term α∂tu(ξ, t)δξ is definitely not a damping term in the problem.
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Summary and perspectives

In this work, we made use of the explicit expression of the characteristic
equation.

This allows to obtain detailed information about the optimal
decay rate, by using nonlinear analysis and complex analysis methods on
the characteristic equation.

A take-home question
Can we also study the optimal decay rate of an evolution problem
involving variable coefficients a(x) and b(x)?

Can one show that the
damping rate converges to 0 for α → +∞ in this case too?
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Thanks for your attention!
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The axis ℜ(z) = −b
2

Lemma
If α > 0, then, the only possible eigenvalue on the axis ℜ(z) = −b

2 is
µ = −b

2 .

Proof.
Assume that µ is a root of the characteristic equation with ℜ(µ) = −b

2 .

Then, one has b + µ = −µ, so that

λ4 = −µ(b + µ)
a = |µ|2

a
is positive. Plugging such a λ into the characteristic equation implies after
some elementary computations that µ is real.
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Small values of α, α > 0

Lemma (Roughly stated)
When α > 0 is small, “all eigenvalues µ starting on the axis ℜ(z) = −b

2
move to the left”.

Ingredients of the proof:

explicit expression of the derivative of eigenvalues with respect to α;
knowledge of the signs of F0 and F1 (this required to work a lot in the
previous slides!).
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